Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38412117

ABSTRACT

CONTEXT: Low magnesium levels, which are common in people with type 2 diabetes, are associated with increased levels of pro-inflammatory molecules. It is unknown whether magnesium supplementation decreases this low-grade inflammation in people with type 2 diabetes. OBJECTIVE: We performed a multidimensional immunophenotyping to better understand the effect of magnesium supplementation on the immune system of people with type 2 diabetes and low magnesium levels. METHODS: Using a randomized, double-blind, placebo-controlled, two-period, cross-over study, we compared the effect of magnesium supplementation (15 mmol/day) to placebo on the immunophenotype including whole blood immune cell counts, T-cell and CD14+ monocyte function after ex vivo stimulation, and the circulating inflammatory proteome. RESULTS: We included 12 adults with insulin-treated type 2 diabetes (7 males, mean±SD age 67±7 years, BMI 31±5 kg/m2, HbA1c 7.5±0.9 %) and low magnesium levels (0.73±0.05 mmol/l). Magnesium treatment significantly increased serum magnesium and the urinary magnesium excretion, when compared to placebo. The IFN-γ production from PMA/ionomycin stimulated CD8+ T-cells and T-helper 1 cells, as well as the IL4/IL5/IL13 production from T-helper 2 cells was lower after treatment with magnesium compared to placebo. Magnesium supplementation did not affect immune cell numbers, ex vivo monocyte function and circulating inflammatory proteins, although we found a tendency for lower high sensitive CRP levels after magnesium supplementation compared to placebo. CONCLUSIONS: In conclusion, magnesium supplementation modulates the function of CD4+ and CD8+ T-cells in people with type 2 diabetes and low serum magnesium levels.

4.
Diabetologia ; 66(6): 1035-1044, 2023 06.
Article in English | MEDLINE | ID: mdl-36879098

ABSTRACT

AIMS/HYPOTHESIS: It is generally recommended to reduce basal insulin doses after exercise to reduce the risk of post-exercise nocturnal hypoglycaemia. Based on its long t½, it is unknown whether such adjustments are required or beneficial for insulin degludec. METHODS: The ADREM study (Adjustment of insulin Degludec to Reduce post-Exercise (nocturnal) hypoglycaeMia in people with diabetes) was a randomised controlled, crossover study in which we compared 40% dose reduction (D40), or postponement and 20% dose reduction (D20-P), with no dose adjustment (CON) in adults with type 1 diabetes at elevated risk of hypoglycaemia, who performed a 45 min aerobic exercise test in the afternoon. All participants wore blinded continuous glucose monitors for 6 days, measuring the incidence of (nocturnal) hypoglycaemia and subsequent glucose profiles. RESULTS: We recruited 18 participants (six women, age 38 ± 13 years, HbA1c 56 ± 8 mmol/mol [7.3 ± 0.8%], mean ± SD). Time below range (i.e. glucose <3.9 mmol/l) the night after the exercise test was generally low and occurrence did not differ between the treatment regimens. During the subsequent whole day, time below range was lower for D40 compared with CON (median [IQR], 0 [0-23] vs 18 [0-55] min, p=0.043), without differences in the number of hypoglycaemic events. Time above range (i.e. glucose >10 mmol/l) was greater for D20-P vs CON (mean ± SEM, 584 ± 81 vs 364 ± 66 min, p=0.001) and D40 (385 ± 72 min, p=0.003). CONCLUSIONS/INTERPRETATION: Post-exercise adjustment of degludec does not mitigate the risk of subsequent nocturnal hypoglycaemia in people with type 1 diabetes. Although reducing degludec reduced next-day time below range, this did not translate into fewer hypoglycaemic events, while postponing degludec should be avoided because of increased time above range. Altogether, these data do not support degludec dose adjustment after a single exercise bout. TRIAL REGISTRATION: EudraCT number 2019-004222-22 FUNDING: The study was funded by an unrestricted grant from Novo Nordisk, Denmark.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adult , Female , Humans , Middle Aged , Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 1/drug therapy , Exercise , Hypoglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin Glargine/therapeutic use , Male
5.
J Clin Endocrinol Metab ; 108(8): 1909-1920, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36800223

ABSTRACT

CONTEXT: Type 1 diabetes (T1D) is associated with alterations of the immune response which persist even after the autoimmunity aspect is resolved. Clinical factors that cause dysregulation, however, are not fully understood. OBJECTIVE: To identify clinical factors that affect immune dysregulation in people with longstanding T1D. DESIGN: In this cross-sectional study, 243 participants with longstanding T1D were recruited between February 2016 and June 2017 at the Radboudumc, the Netherlands. Blood was drawn to determine immune cell phenotype and functionality, as well as circulating inflammatory proteome. Multivariate linear regression was used to determine the association between glycated hemoglobin (HbA1c) levels, duration of diabetes, insulin need, and diabetes complications with inflammation. RESULTS: HbA1c level is positively associated with circulating inflammatory markers (P < .05), but not with immune cell number and phenotype. Diabetes duration is associated with increased number of circulating immune cells (P < .05), inflammatory proteome (P < .05), and negatively associated with adaptive immune response against Mycobacterium tuberculosis and Rhizopus oryzae (P < .05). Diabetes nephropathy is associated with increased circulating immune cells (P < .05) and inflammatory markers (P < .05). CONCLUSION: Disease duration and chronic complications associate with persistent alterations in the immune response of individuals with long standing T1D.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/complications , Glycated Hemoglobin , Cross-Sectional Studies , Proteome
6.
J Microbiol Biotechnol ; 31(12): 1716-1721, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34584033

ABSTRACT

Chikungunya fever is an arboviral disease caused by the Chikungunya virus (CHIKV). The disease has similar clinical manifestations with other acute febrile illnesses which complicates differential diagnosis in low-resource settings. We aimed to develop a rapid test for CHIKV detection based on the nucleic acid lateral flow immunoassay technology. The system consists of a primer set that recognizes the E1 region of the CHIKV genome and test strips in an enclosed cassette which are used to detect amplicons labeled with FITC/biotin. Amplification of the viral genome was done using open-source PCR, a low-cost open-source thermal cycler. Assay performance was evaluated using a panel of RNA isolated from patients' blood with confirmed CHIKV (n = 8) and dengue virus (n = 20) infection. The open-source PCR-NALFIA platform had a limit of detection of 10 RNA copies/ml. The assay had a sensitivity and specificity of 100% (95% CI: 67.56% - 100%) and 100% (95% CI: 83.89% - 100%), respectively, compared to reference standards of any positive virus culture on C6/36 cell lines and/or qRT-PCR. Further evaluation of its performance using a larger sample size may provide important data to extend its usefulness, especially its utilization in the peripheral healthcare facilities with scarce resources and outbreak situations.


Subject(s)
Chikungunya Fever/diagnosis , Chikungunya virus/isolation & purification , Molecular Diagnostic Techniques/methods , Chikungunya Fever/blood , Chikungunya virus/genetics , Genome, Viral/genetics , Humans , Immunoassay , Indonesia , Limit of Detection , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/standards , Polymerase Chain Reaction , RNA, Viral/blood , RNA, Viral/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...